
1

Perspectives on cavity field control
Olof Troeng, Dept. of Automatic Control, Lund Univeristy
Low-Level RF Workshop, 2019-10-03



2

Outline

Thoughts from an automatic-control (and linac) perspective

1. Complex-coefficient LTI systems
2. Energy-based parametrization of cavity dynamics
3. Normalized cavity dynamics, sensitivity to disturbances
4. Parasitic modes
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Baseband cavity models

Complex SISO representation

Pa(s) =
ω1/2

s + ω1/2 − i∆ω

Real TITO representation

Pa(s) =
ω1/2

(∆ω)2 + (s + ω1/2)2

[
ω1/2 −∆ω
∆ω ω1/2

]

The complex representation is well known, but not much used for control design.

Complex-coefficient systems are ubiquitous in communications, but rare in control:
“Poles always come in conjugate pairs” nope, they lied to you
Other control applications:

Vibration damping of rotating machinery FB linearization of RF amps.
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Relation between real and complex representations

Complex SISO representation

G(s) = GRe(s) + iGIm(s)

Real TITO representation

Gequiv(s) =
[
GRe(s) −GIm(s)
GIm(s) GRe(s)

]

Consider eigendecomposition

Gequiv(s) = U
[
G(s) 0
0 G∗(s)

]
UH, U = 1√

2

[
1 1
−i i

]
.

Note: G∗(iω) = G(−iω). Positive and negative frequencies are intertwined in Gequiv(s)

Advantages of the complex-coefficient representation
Simplifies understanding, calculations, life in general, etc
Structure is implicit, good for system identification
More efficient computations
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Control theory for complex-coefficient systems
Standard tools and results apply but
Change AT to AH

Remember to consider negative frequencies

MatLab handles complex-coefficient okay, but some problems, e.g., nyquist

Illustration of Bode’s sensitivity integral (the water-bed effect)
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Intuitive understanding of loop-phase adjustment

Open-loop system: eiθadjC(s)e−iθPa(s)e−sτ = eδL0(s) where δ := θadj − θ.

eiθadjC(s) e−iθPa(s)e−sτ

−1 -1
δ = 0◦

Re L(iω)

Im L(iω)

Loop-phase-adjustment error δ gives corresponding phase-margin reduction!
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Intuitive understanding of loop-phase adjustment

Open-loop system: eiθadjC(s)e−iθPa(s)e−sτ = eδL0(s) where δ := θadj − θ.

eiθadjC(s) e−iθPa(s)e−sτ

−1 -1
δ = 45◦

Re L(iω)

Im L(iω)

Loop-phase-adjustment error δ gives corresponding phase-margin reduction!
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Energy-based parametrization
of cavity dynamics
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Accelerator Cavity Modeling (1/2)

Energy-based parametrization:

Equivalent-circuit parametrization:

dA
dt = (−γ + i∆ω)A +

√
2γextFg + α

2 Ib

dV
dt =(−ω1/2 + i∆ω)V+RLω1/2 (2Ig+Ib)

Pg = 1
4

r
Q Qext |Ig|2
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Accelerator Cavity Modeling (1/2)

Energy-based parametrization:

Equivalent-circuit parametrization:

dA
dt = (−γ + i∆ω)A +

√
2γextFg + α

2 Ib

dV
dt =(−ω1/2 + i∆ω)V+RLω1/2 (2Ig+Ib)

Pg = 1
4

r
Q Qext |Ig|2

RF drive is modeled as fictitious generator current Ig. Problematic.
“One word of caution is required here: /.../ for considerations where Qext varies /.../ or where
(R/Q) varies /.../ the model currents cannot be considered constant; they have to be
re-adapted” [Tückmantel (2011)]
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Accelerator Cavity Modeling (1/2)

Energy-based parametrization: Equivalent-circuit parametrization:
dA
dt = (−γ + i∆ω)A +

√
2γextFg + α

2 Ib

A – Mode amplitude
[√

J
]

Fg – Forward wave
[√

W
]

V = αA
(
α =

√
ωa(r/Q)

)

Pg = |Fg|2

Haus (1984) Waves and fields in optoelectronics
plus beam loading

dV
dt =(−ω1/2 + i∆ω)V+RLω1/2 (2Ig+Ib)

Pg = 1
4

r
Q Qext |Ig|2
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Accelerator Cavity Modeling (1/2)

Energy-based parametrization: Equivalent-circuit parametrization:
dA
dt = (−γ + i∆ω)A +

√
2γextFg + α

2 Ib

Pg = |Fg|2

dV
dt =(−ω1/2 + i∆ω)V+RLω1/2 (2Ig+Ib)

Pg = 1
4

r
Q Qext |Ig|2

Advantages of energy-based parameterization:
Cleaner expressions, e.g., Pg = |Fg|2

States and parameters are well defined
Direct connection to physical quantities of interest
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Accelerator Cavity Modeling (1/2)

Energy-based parametrization: Equivalent-circuit parametrization:
dA
dt = (−γ + i∆ω)A +

√
2γextFg + α

2 Ib
dV
dt =(−ω1/2 + i∆ω)V+RLω1/2 (2Ig+Ib)

Pg = 1
4

r
Q Qext |Ig|2

Helpful to think of γ as both decay rate and bandwidth.
The total decay rate γ = γ0 + γext, not so intuitive if considered as bandwidths
Common for laser cavities
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Optimal coupling and detuning

Minimize |Fg0| 2 = 1
2γext

∣∣∣∣(−γ0 − γext + i∆ω)A0 + α

2 Ib0

∣∣∣∣

with repsect to ∆ω and γext

Solution: ∆ω = − 1
A0

Im α

2 Ib0, γext = γ0 −
1
A0

Re α2 Ib0
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Minimize |Fg0| 2 = 1
2γext

∣∣∣∣(−γ0 − γext + i∆ω)A0 + α

2 Ib0

∣∣∣∣

with repsect to ∆ω and γext

Solution: ∆ω = − 1
A0

Im α

2 Ib0, γext = γ0 −
1
A0

Re α2 Ib0

Mode amplitude A [
√

J] Terms of d
dt A [

√
J/s]

√
2γextFg

α

2 Ib

(−γ+i∆ω)A
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Minimize |Fg0| 2 = 1
2γext
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∣∣∣∣

with repsect to ∆ω and γext
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Im α
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−γ0A−γextAi∆ωA
√
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α

2 Ib
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√
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Optimal coupling and detuning

Minimize |Fg0| 2 = 1
2γext

∣∣∣∣(−γ0 − γext + i∆ω)A0 + α

2 Ib0

∣∣∣∣

with repsect to ∆ω and γext

Solution: ∆ω = − 1
A0

Im α

2 Ib0, γext = γ0 −
1
A0

Re α2 Ib0 = γ0 + γbeam

−γ0A−γextAi∆ωA
√

2γextFg
α

2 Ib

Terms of d
dt A [

√
J/s]
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Normalized cavity dynamics
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Normalization

a := 1
A0

A, fg := 1
γA0

√
2γextFg, ib := 1

γA0

αIb
2 .

Normalized cavity dynamics

ȧ = (−γ + i∆ω)a + γ(fg + ib).

At nominal operating point, with optimal coupling and tuning,
1 ≤ fg0 ≤ 2, 0 ≤ Re ib0 ≤ 1.
Relative disturbances db and db give rise to

fg ≈ (1 + db)(fg0 + f̃g) ≈ fg0 + f̃g + fg0db

ib = (1 + db)ib0

Introducing the relative field error z = 1− a, we have

ż = (−γ + i∆ω)z + γ f̃g + γfg0db + γib0db
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Transfer functions around operating point
At nominal operating point

ż = (−γ + i∆ω)z + γ f̃g + γfg0dg + γib0db

The transfer function from control action to the cavity field is given by

Pa(s) :− γ

s + γ − i∆ω

Transfer functions from relative disturbances to relative field errors are given by

Pdg→z(s) = fg0Pa(s) (1)
Pdb→z(s) = ib0Pa(s) (2)

For optimally tuned and coupled superconducting cavities fg0 = 2.

Additional factor 2 in disturbance sensitivity to relative amplifier variations!
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Impact of disturbances

For clarity, assume that ∆ω = φb = 0, so γib0 = γbeam and γfg0 = γ0 + γext + γbeam

Transfer functions from relative disturbances to relative field errors are given by

Pdg→z(s) = γ0 + γext + γbeam
s + γ0 + γext

, (3)

Pdb→z(s) = γbeam
s + γ0 + γext

. (4)

Sensitivity to amplifier ripple, equation (4), cannot be made smaller than γ0 + γbeam
s + γ0

Difficulty of field control is determined by γ0 and γbeam, but typically γ = 2γ0 + γbeam
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Parasitic modes
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Parasitic modes

γa
s + γa − i∆ωa

fg

ib

γa
s +γ1−i∆ω1

α1
αa√2γext1√2γexta

c1
caa1

γa
s +γN−i∆ωN

αN
αa√2γextN√2γexta

cN
caaN

aa

...

... ... ...

aa

vpu
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Parasitic modes

Pa(s)

Px(s)

Pxb(s)

fg

ib

aa

vpu

A. Calibrate setpoint vpu for aa = a?a with
short/low-current beam pulses (ib0 = 0)
B. Operation with nominal beam current and
regulation to the set point
Gives error steady-state error:

δ = aB
a − a?a = Px(0)− Pxb(0)

Pa(0) + Px(0) Pa(0)ib0

≈ (Px(0)− Pxb(0))ib0
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Parasitic modes

Pa(s)

Px(s)

Pxb(s)

fg

ib

aa

vpu

A. Calibrate setpoint vpu for aa = a?a with
short/low-current beam pulses (ib0 = 0)
B. Operation with nominal beam current and
regulation to the set point
Gives error steady-state error:

δ = aB
a − a?a = Px(0)− Pxb(0)

Pa(0) + Px(0) Pa(0)ib0

≈ (Px(0)− Pxb(0))ib0

ESS medium-β cavity: δ = Px(0)ib0 ≈
γ5π/6

i∆ω5π/6
= R2

5γπ
i∆ω5π/6

≈ 0.00187i ↔ 0.11◦
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Parasitic modes

Pa(s)

Px(s)

Pxb(s)

fg

ib

aa

vpu

A. Calibrate setpoint vpu for aa = a?a with
short/low-current beam pulses (ib0 = 0)
B. Operation with nominal beam current and
regulation to the set point
Gives error steady-state error:

δ = aB
a − a?a = Px(0)− Pxb(0)

Pa(0) + Px(0) Pa(0)ib0

≈ (Px(0)− Pxb(0))ib0

How to handle this? Do nothing, Kalman filter, re-calibrate?
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Parasitic modes
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Relations between same-order modes

γπ

s + γπ − i∆ωπ

fg

ib

γπ

s +γN-1−i∆ωN-1

αN-1
απ

RN-1 −RN-1aN-1

γπ

s +γ1−i∆ω1

α1
απ

R1 (-1)N-1R1a1

γπ

s + γ1 − i∆ω1

aπ

...

... ... ...

vpu

γextn = R2
nγextπ

∆ωn ≈ (R2
n − 2)kccωcell

where Rn :=
√
2 sin(nπ/(2N))
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Relations between same-order modes

γπ

s + γπ − i∆ωπ

fg

ib

γπ

s +γN-1−i∆ωN-1

αN-1
απ

RN-1 −RN-1aN-1

γπ

s +γ1−i∆ω1

α1
απ

R1 (-1)N-1R1a1

γπ

s + γ1 − i∆ω1

aπ

...

... ... ...

vpu

Pcav(s) = γπ

N∑

n=1
(−1)N−n R2

n
s + γextn + γ0 − i∆ωn

γextn = R2
nγextπ

∆ωn ≈ (R2
n − 2)kccωcell

where Rn :=
√
2 sin(nπ/(2N))
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Bode magnitude plot for 6-cell cavity

−103−105−107

−10−2

−100
|Pcav(iω)|

103 105 107

γ0 = 0
γ0 = 10γextπ

Frequency, ω/2π [Hz]

Similar to ESS medium-β cavity, γextπ = 700Hz
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Fit to measured data

−105−106−107

−100

|Pcav(iω)|

105 106 107

Data

Frequency, ω/2π [Hz]

Measurements by P. Pierini on warm 6-cell ESS medium-β cavity

Four parameters were fitted. Estimated resistive decay rate, γ0/2/π = 35 kHz

.
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Fit to measured data

−105−106−107

−100

|Pcav(iω)|

105 106 107

Data
Model fit

Frequency, ω/2π [Hz]

Measurements by P. Pierini on warm 6-cell ESS medium-β cavity
Four parameters were fitted. Estimated resistive decay rate, γ0/2/π = 35 kHz.
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Example Control Strategies for Parasitic Modes (1/3)

PI controller + 3rd order filter
Set controller parameters for good phase of resonant “bubble”

-1

Re L(iω)

Im L(iω)

|L(iω)|

103 105

103105

10−2

100
|S(iω)|

103 105
Frequency [Hz]
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Example Control Strategies for Parasitic Modes (2/3)

PI controller + 2nd order filter
Wide-band suppression of the “bubble”

-1

Re L(iω)

Im L(iω)

|L(iω)|

103 105

103105

10−2

100
|S(iω)|

103 105
Frequency [Hz]
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One-Sided Notch Filter

10−2

100
|F (iω)|

−103−105

−180◦
0◦

180◦
∠F (iω)

103 105

Frequency [Hz]

Re

Im
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Example Control Strategies for Parasitic Modes (3/3)

PI controller + one-sided notch filter + 2nd order filter
Notch out the “bubble”

-1

Re L(iω)

Im L(iω)

|L(iω)|

103 105

103105

10−2

100
|S(iω)|

103 105
Frequency [Hz]
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Summary

Analyzing the field control loop as a complex-coefficient system is easier and gives
more understanding. Particularly for loop-phase adjustment and parasitic modes.
Energy-based cavity parametrization is more convenient and fundamental.
There is a factor ≈ 2 in relative sensitivity to amplifier variations.
Parasitic modes may give systematic control error since the controlled variable is not
measured.

More details in upcoming PhD thesis.
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